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• DAGs can be used to describe a wide range of 
complex applications and parallel computing jobs

• Problem: given a DAG G and a multiprocessor
platform find a schedule of G

• Hu [1961]: “Parallel sequencing and assembly line 
problems” 

• Graham [1966,1969]: “Bounds on multiprocessing 
timing anomalies”

The DAG model



The  DAG model

The model captures the intra-parallelism of jobs
Feasibility problem
Given:  a DAG G, m identical parallel machines, a deadline D
Goal:  Decide if G  can be scheduled before deadline D
• NP-complete - unitary processing time  [Ullman 1975]
• Easy to approximate within  2-1/m - list scheduling [Graham 1969]
• Hard to approximate better than 4/3 - unitary processing time 

[Lenstra et al. 1978]
• Assuming the unique game conjecture It is hard to approximate 

better than 2-1/m [Svensson 2011]

A D

C

B Parameters of a DAG-job 
• a directed acyclic graph Gi= (Vi,Ei)
• node v∈Vi has WCET Cv
• arc(u,v) indicates precedence constraint

u≺v



The DAG model has been studied for a long time:
• survey published in 1999 has received more than 1700 

citations
• Google ‘dag scheduling’ 74000 documents - since 2021: 7470

Main focus: 
Design and analysis of scheduling algorithms in multi-core 
processor or in a computing cluster with the objective to 
minimize the total execution time (makespan) or other objective
and/or the amount of computing resources (cost)

Extensions of the model
• Communication among nodes
• Recurrent DAG jobs
• Energy requirements
• Memory requirements

The DAG model



• New applications (e.g. autonomous cars)  are being
realized via an evolving repertoire of artificial-
intelligence (AI) algorithms that realize new 
capabilities (e.g. visual perception and decision-
making)

• These algorithms often have complex dataflow
dependencies expressible using processing graphs
that can be computationally intensive, requiring the 
usage of hardware accelerators (HACs), 

Challenges 
• complex graph-based workloads
• complex heterogeneous hardware

Today’s new challenges



I will focus on extensions of the DAG model
1. The conditional C-DAG model
2. Recurrent DAG-jobs: sporadic DAG model
3. Heterogenous hardware: the HPC-DAG model

The focus is theoretical mainly addressing the
• Complexity of feasibility problems

I do not present/discuss
• heuristics (and their comparison)
• other objective functions
• detailed presentation of the many problem variations

This talk



The conditional C-DAG model
• Feasibility of C-DAG
• A crash course on PSPACE
• Feasibility of C-DAG is PSPACE complete
• List scheduling C-DAGs
• Open problems

The conditional C-DAG model



Conditional DAG: C-DAG model

A conditional construct

A generalization of the DAG task model

Exposes intra-task parallelism (as do “regular” DAG tasks)

Models conditional execution of code



Conditional DAG (C-DAG)

A boolean expression is evaluated

Conditional nodes are special nodes that are defined in pairs
• a conditional is evaluated
• based on the outcome, control flows along one of the 

possible paths different paths join at a common point



Conditional DAG (C-DAG)

A boolean expression is evaluated

A generalization of the DAG task model

Exposes intra-task parallelism (as do “regular” DAG tasks)

Models conditional execution of code



Conditional DAG (C-DAG)

Conditional branches are well nested

KNot 
allowed

Wlog we assume 
• each node has unitary execution time
• conditional nodes  (     ) have 0 execution time



Feasibility analysis

Feasibility problem
Determine, prior to deployment, whether all timing 
constraints will always be met: relevant in real time 
scheduling

Formally
Given:  a C-DAG G, m identical parallel machines  and a 
deadline D 
Goal:  Decide if G  can be scheduled before deadline D

Feasibility analysis should be  efficient



weak sense

strong sense

PNP

P

NP - weak

NP - strong

PNP

PSPACE Polynomial Space 

Polynomial Time

(Polynomial time, 
with an NP oracle)

Solved using ILP-solvers

A problem that is hard for PSPACE 
cannot be efficiently solved using 

ILP-solvers

Complexity Classes 

PNP

weak sense

strong sense

PSPACE

Feasibility analysis of 
DAG is NP strong

Complexity classesFeasibility analysis of conditional DAG is PSPACE 
complete [Baruah MS 2021]
First natural scheduling problem to be shown to be 
PSPACE complete



Why the C-DAG feasibility problem is difficult

Given a C-DAG G with k conditions and a deadline D 
we want to know whether
• is it possible to schedule G within in D time units for 

all possible outcomes of conditional instructions?
We now see that
• feasibility of the 2k (non conditional) DAGs, obtained by 

considering all possible outcomes of  the k conditional
instructions

is NOT SUFFICIENT  to claim that
• G can be feasible scheduled within the deadline

Why?  
The feasibility test of G is not clarvoyant: it does not know the 
outcome of conditional instructions before their execution



Why the C-DAG feasibility problem is difficult

Given a C-DAG G with k conditions and a deadline D we want to 
know whether
• is it possible to schedule G within in D time units for all

possible outcomes of conditional instructions?

We now see that
• feasibility of the 2k (non conditional) DAGs, obtained by 

considering all possible outcomes of  the k conditional
instructions

is NOT SUFFICIENT  to claim that
• G can be feasible scheduled within the deadline

In the sequel for simplicity we restrict to the case of dedicated 
processors (for every node is executed on a specific processor)



If the conditional construct executes D 
then
• t=0  schedule A , C
• t=1 schedule B ,      , G
• t=2 schedule H , K , 
• t=3 schedule I , J
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H

J

K

I

Each square vertex has WCET 
equal to one (conditional
vertices –WCET zero)

Processor assignments are 
color-coded: 
• A, H, & I share processor, 
• B,C, J, & K; 
• D & F; 
• E & G.

Feasibility Analysis of Conditional DAGs 

The DAG is always schedulable within 4 time units. 

If the conditional construct executes E 
then: invert execut. order of (B,C) (K,J)
• t=0  schedule A, C-, B 
• t=1 schedule -B-, C, D-, E, -G-, F
• t=2 schedule H,-K-, J, -F-, G
• t=3 schedule I, -J- , K

D

F

X



If the conditional construct executes D 
then
• t=0  schedule A, C
• t=1 schedule B, D, G
• t=2 schedule H,K,F
• t=3 schedule I,J 

A

B

C

E

F

G

D

H

J

K

I

Each vertex has WCET equal
to one (except the
conditional vertices –WCET 
zero)
Processor assignments are 
color-coded: 
• A, H, & I share a processor, 
• B,C, J, & K; 
• D & F; 
• E & G.

The DAG is always schedulable within 4 time units. 

If the conditional construct executes E 
then
• t=0  schedule A, C-, B
• t=1 schedule -B-, C, D-, E, -G-, F
• t=2 schedule H,-K-, J, -F-, G
• t=3 schedule I, -J- , K

Which node between B and C should be  
scheduled at time 0?

Feasibility Analysis of Conditional DAGs



NOTE: if at t=0 A, B (i.o. A, C) are scheduled and the conditional
construct executes D then makespan is 5. In fact

A

B

C

E

F

G

D
H

J

K

I
Each vertex has WCET equal to one
(except the
conditional vertices –WCET zero). 
Processor assignments are color-
coded: 
• A, H, & I share a processor, 
• B,C, J, & K; 
• D & F; 
• E & G.

Feasibility Analysis of Conditional DAGs

Time  0 1 2 3 4 5

B C

I
G
F

J K B C
I

G
F

J
K

Time  0 1 2 3 4 5
H HDA A D

t=1 schedule C, and one between D and F

If F is scheduled at t=1. then execution of D, H, I will complete at time 5
If D is scheduled at t=1 then at time 3 both J and K require the blue processor

X



A

B

C

E

F

G

D
H

J

K

I

Each vertex has WCET equal to one
(except the
conditional vertices –WCET zero). 
Processor assignments are color-
coded: 
• A, H, & I share a processor, 
• B,C, J, & K; 
• D & F; 
• E & G.

Feasibility Analysis of Conditional DAGs

We have shown that
1. To schedule the graph in 4 time units we must know at

time t=0 the outcome of the conditional instruction
2. This is not possible for nonclarvoyant algorithms

Therefore
The C-DAG cannot be feasibly scheduled in 4 time units



• The previous example (1 conditional node) can be generalized
• If the DAG G has k conditions to prove  feasibility of G it is not

sufficient to show feasibility for 2k subproblems (obtained by 
considering all possible outcomes of k conditions)
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E

F
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D
H

J

K

I

Each vertex has WCET equal to one
(except the
conditional vertices –WCET zero). 
Processor assignments are color-
coded: 
• A, H, & I share a processor, 
• B,C, J, & K; 
• D & F; 
• E & G.

Feasibility Analysis of Conditional DAGs

PSPACE hardness of the problem formalizes this observation



A crash course on PSPACE

NP: solvable in polynomial time by a non deterministic
algorithm
• Property: 'YES' answers of NP-complete problems have short 

(polynomial) certificates.

It is conjectured that
P /   NP    /    PSPACE (proper inclusion)Í Í

PSPACE: solvable in polynomial space by a deterministic
algorithm
• Property: a ‘YES’ answer of PSPACE-complete problems is a winning

strategy for a two-player game with perfect information, where
players make alternate moves (e.g.  chess,  checkers).

• Winning strategy: Player 1 has a winning strategy if there exists a 1st 
move, such that for all possible 1st moves of Player 2, there exists a 
2nd move for Player 1 s.t. ….  and Player 1 wins at the end.



To formalize 2 players games we need
1. inputs of any dimension
• Checkers, chess: introduce a board of size n x n (instead of 8 x 8)

Question: is there a winning strategy for the first player?

• Geography. Alice names capital city c of a  country. Bob names a 
capital city cʹ that starts with the letter on which c ends. Alice and 
Bob repeat this game until one player is unable to continue.

Example:  Budapest → Tokyo → Ottawa → Ankara → 
Amsterdam → Moscow → Washington → Nairobi → …

We formalize Geography using graphs: Given a directed graph G = (V, E) 
and a start node s, two players alternate turns by following, if possible, 
an edge leaving the current node to an unvisited node. 

Question: is there a strategy for the first player that guarantees to do 
the last move?

A crash course on PSPACE



Geograhy on graphs
Given a directed graph G = (V, E) and a start node s, 
two players P1 and P2 alternate turns by following, if
possible, an edge leaving the current node to an unvisited
node. 
The game ends when there is no a feasible move. 
The player that makes the last legal move wins.

Question:Is there a winning
strategy for Player 1?

Starting node 1
• if a player reaches either node 3 

or 8 then she looses
if a player reaches 9 then she wins

A crash course on PSPACE



Given a directed graph G = (V, E) and a start node s, 
two players P1 and P2 alternate turns by following, if possible, an edge
leaving the current node to an unvisited node. 
The game ends when there is no a feasible move. 
The player that makes the last legal move wins.

Starting node 1

A crash course on PSPACE

There is a winning strategy for P1
• P1 chooses 2
• P2 chooses 4 (the only choice)
• P1 now chooses 5 
• P2 subsequently chooses 3 or 7 
• Regardless of P2's choice,

P1 chooses 9 
• P2 has no remaining choices and 

loses the game.

Checkers on N x N board and 

Geography on graphs are  

PSPACE-complete

Geograhy on graphs



2. Quantifiers: We need quantifiers to express the meaning of 
English words including ‘all’ and ‘some’: 

“All men are Mortal”    or  “Some cats do not have fur” 
Two kinds of quantifiers: Universal and Existential
• Universal Quantifier: represented by "

The symbol is translated as and means  “for all”, “given 
any”, “for each,” or “for every”.

• Existential Quantifier:  represented by $
The symbol is translated as and means variously “for some,” 
“there exists,” “there is a,” or “for at least one”.

To formalize 2 players games we need
1. Inputs of any dimension
2. Quantifiers

A crash course on PSPACE



• Quantified Boolean Formula is the canonical problem for 
PSPACE (like Satisfiability is for NP) 

• A QBF is a boolean formula in which boolean variables are 
quantified using $ and  "

• A Fully Quantified Boolean Formula QBF where $ and  "
alternate and F is a boolean formula has the form (n is even) 

$ x1 " x2 $ x3 …. " xn F(x1, x2…. xn) 

Quantified Boolean Formula (QBF) 

A crash course on PSPACE

Note: ordering of quantifiers is essential. In fact
$ x " y (x = y) is FALSE " x $ y (x = y) is TRUE

• All variables are quantified;  therefore, 
a Fully QBF is either TRUE or FALSE; examples

[$ x " y (x OR y)]   is TRUE     [$ x " y (x AND y)]  is FALSE



Part 2: Putting all pieces together
2.1 The conditional DAG feasibility problem as a two-
players game  (the scheduler vs the environment)

Feasibility Analysis of Conditional DAG Tasks

The scheduler wins the game if and only if her strategy is able to 
complete the schedule in D time units for all possible decisions
of the second player (i.e. for all possible sequences of branches).

Given a C-DAG and a deadline D, then
• the first move of player 1 (the scheduler) is to decide the set 

of jobs to be scheduled until the first branch is executed; 
• then player 2 (the environment) decides the outcome of the 

branch; 
• then player 1 decides the set of jobs to be scheduled until the 

second branch is executed
• …..
• the game continues until the scheduling is completed



Part 2: Putting all pieces together
2.2 Reducing QBF to C-DAG feasibility

Given a Fully QBF F we define a C-DAG and a deadline D
• For each existentially quantified variable xi, i=1,3,5,…  we define

two subdags Ai1 Ai2
• For each universally quantified variable xi, i=2,4,6,…  we define

one conditional subdag Bi, whose branches define two sets of 
nodes to be scheduled

• There is a subdag C that encodes the formula
• Precedence constrained are defined among subdags Ai1 Ai2 Bi C 

Feasibility Analysis of Conditional DAG Tasks

The scheduler completes the schedule in D time units for all
possible decisions of the second player (i.e. for all possible
sequences of branches) if and only if the QBF F is TRUE



List Scheduling of C-DAGs

Since the feasibility problem is hard we rely on 
heuristics

List scheduling [Graham 66]: Given a DAG G and a fixed-
priority order ≺, at any point of time schedule the available
node with higher priority

Graham’s bound
• for any DAG G and any fixed-priority order ≺, list scheduling 

is 2- 1/m approximate [Graham 1966]

Generalizing Graham’s bound:
• for any C-DAG and any fixed-priority order ≺, list scheduling 

is 2- 1/m approximate [MS Megow Skutella Stougie Schlöter 2020]



Feasibility of List Scheduling for C-DAGs

List scheduling feasibility
• Input (G, ≺, D): a C-DAG G, a fixed-priority order ≺ and a 

deadline D we want to know whether
• is it possible to schedule G within in D time units for all

possible outcomes of conditional instructions using list 
scheduling?

• Complexity of of list scheduling feasibility
[MS Megow Skutella Stougie Schlöter 2020]

• C-DAG is strongly coNP-complete (m>2)
• if m = 2 C-DAG is weakly coNP-complete 
• approximating C-DAG in a ratio better than 7/5 is NP-hard
• C-DAG is weakly coNP-complete even if each possible

execution is a constant number of disjoint chains. 



General conditional DAGs

Not well nested C-DAG (also C-DAGwith shared
nodes )
• List scheduling Feasibility is NP-hard even on a single 

processor [MS Megow Skutella Stougie Schlöter 2020]
• Computing the maximum volume (sum of processing times) 

is NP-hard [Sun et al. 2020]

Kallowed



Conclusions

Open problems: Feasibility of C-DAG

1. If the number of conditions is constant then the 
problem is in NP and there exists an ILP formulation to 
check feasibility [Baruah,MS]. However the proposed
formulation it is not practical even for small instances
• Find an ILP formulation with an acceptable complexity

2. previous hardness results use reductions to instances
with an unbouded no. of machines. 
• What is the complexity in the case of a fixed number

of machines? (both for feasibility and list scheduling)

3.  Special classes
• Are there other restricted (and interesting) classes that

make the problem (more) tractable? Equivalently is
there a input parameter s.t. if the parameter is
bounded then the problem is polynomially solvable?



Recurrent DAGs
• The sporadic DAG model
• Performance metric: analysis of EDF, DM
• The sporadic C-DAG model
• Open problems

Recurrent DAGs



Conclusions

Sporadic DAG task model

In real-time systems we are interested in 
scheduling a set of recurrent jobs that are 
periodically released

A sporadic DAG task is defined by a triple (G,D,T) 
• a DAG G, a deadline D, a period T

A sporadic DAG task releases a sequence of DAG 
jobs; 
• if a dag-job is released at time t then the next

DAG-job  is released at or after time t+T

• A sporadic DAG task releases infinite sequences
of infinite lenght of the same DAG



System of sporadic DAG-tasks

A sporadic DAG task releases a sequence of DAG-jobs 
Parameters of a DAG-task τi

• a directed acyclic graph Gi= (Vi,Ei), 
• a deadline Di
• a minimum inter-arrival time Ti

A D

C

B

A D

C

B

Di

≤ Ti



Conclusions

System of sporadic DAG-tasks

A task set S, S ={τ1 , τ2 … τn },  of  DAG tasks τi defines a 
system of sporadic DAG tasks  [Baruah, Bonifaci,MS, 
Stougie, Wiese 2012]

A task set S is said to be feasible upon a specified
platform if a valid schedule exists on that platform for 
every collection of jobs that may be generated by the 
task set S

Feasibility problem Given a set S of DAG-tasks there
exists a feasible schedule for all possible release 
sequences of DAG-jobs in S?



Scheduling algorithm and performance metric

Given a scheduling algorithm ALG, a task set is said to be 
ALG-schedulable upon a specified platform if ALG meets all
deadlines when scheduling any collection of jobs that may
be generated by the task set upon that platform.

Speedup of a Scheduling Algorithm
Algorithm ALG has speed-up bound σ (σ≥1) if for each task set τ,
• τ feasible on speed-1 platform

τ correctly scheduled by ALG  on a speed-σ platform

Speedup of a Schedulability Test TA
Test TA has speedup bound σ if for each task set τ,
• (TA(τ) =NO) ⇒ τ infeasible on speed-1 platform,
• (TA(τ) =YES) ⇒ τ schedulable by A on speed-σ platform

⇒



Scheduling algorithm and performance metric
(Preemptive) Global Earliest Deadline First (EDF)
• At each time step, schedule the m available jobs with earliest

deadlines

Sporadic jobs  
Jobs released on-line (no DAG) [Phillips Stein Torng 1997]
• EDF has speedup 2−1/m

Sporadic (non conditional) DAG task system [Bonifaci MS, 
Stiller Wiese 2013]
• EDF has speedup 2−1/m
• pseudopolynomial time test for EDF with speedup 2−1/m+ε
• the test is polynomial time when Di ≤ Ti ∀i.



Scheduling algorithm and performance metric

(Preemptive) Deadline Monotonic (DM)
• Order DAGs in non decreasing order of their relative deadline
• At each time step, schedule the m available jobs of  DAGs with  

smaller priorities

Sporadic (non conditional) DAG task system 
[Bonifaci,MS,Stiller, Wiese 2013]
• DM has speedup 3−1/m
• pseudopolynomial time test for EDF with speedup 3−1/m+ε
• the test is polynomial time when Di ≤ Ti ∀i.



Scheduling algorithm and performance metric

Conditional DAG task set
A task set S, S ={τ1 , τ2 … τn },  of  conditional DAG tasks τi defines a 
system of sporadic DAG tasks

Sporadic C-DAG task system [Baruah, Bonifaci MS 2015]
There exists an efficient transformation from conditional DAG tasks to
unconditional DAG tasks that preserves the guarantees provided by 
the test in [Bonifaci,MS,  Stiller, Wiese 2013]

Sporadic (conditional) DAG task system
• EDF has speedup 2 −1/m
• DM has speedup 3−1/m
• pseudopolynomial time test for EDF (speedup 2−1/m+ε) and DM 

(speedup 3−1/m+ε)
• the tests are polynomial time when Di ≤ Ti ∀i.



Conclusions

Sporadic DAG task model

OPEN PROBLEMS
The PSPACE hardness for non conditional DAG task set 
uses a reduction to instances with a constant number
of DAGs but with an unbouded no. of machines. 
Open: 
• What is the complexity of the feasibility problem in 

the case of a constant number of machines? 

Sporadic task model is not the only considered model
Open: 
• Which is the complexity for non sporadic task 

system (e.g. periodic task systems in which DAG-
jobs of task ti are released exactly after Ti time 
units)?



BEYOND WORST CASE ANALYSIS 
Predictions (beyond worst case analysis)
• worst case analysis is too pessimisitic in the evaluation of 

online algorithms
• machine learning techniques can provide good predictions on 

future requests

Challenge: design learning-augmented algorithms
with a performance that
• is close to the best off-line algorithms when given accurate 

predictions (consistency)
• It is not (much) worse than the best off-line algorithm that has

no access to predictions (robustness)

Learning augmented algorithms



Recurrent DAGs: soft deadlines vs hard deadlines
• Hard deadlines: all jobs released by a task system meet

their deadlines 
• Soft deadlines: we might tolerate some deadline miss
• Hard deadlines are often too pessimistic

Soft deadlines possible objectives:
• Compute probability of deadline miss
• Compute probability of consecutive deadlines misses 
• Reduce  consecutive  deadlines misses
• Bound the maximum tardiness of a job

Predictions: sporadic DAG task



Predictions with soft deadlines

Sporadic DAG task:
• worst case execution time of a job is not determinisitic; it

is heavily influenced by the concurrent execution of 
other jobs (memory access, resource reservation, time 
separation…)

Sporadic C-DAG: 
• outcome of conditional branches; branch outcomes differ

(most frequent case and the less frequent one), also
branch outcome is influences by the result of previous / 
concurrent programs

Predictions: sporadic DAG task



Predicting the   outcome of conditional branches
[Ueter Chen et al 2021]: 
• Assume that probabilities of outcome of branches are 

known; probabilities are independent
• pC-DAG: a probabilistic Conditional DAG

They are interested in showing under which conditions the 
probability of k consecutive deadline misses of a pC-DAG 
is no more than a user specified upper bound

Predicting conditional branches



Predicting the   outcome of conditional branches
• [Ueter Chen et al 2021]: Assume that probabilities of 

outcome of branches are known; probabilities are 
independent

• pC-DAG: a probabilistic Conditional DAG

Open: 
• remove assumption that probabilites are independent
• use predictions to optimize algorithms (e.g. priorities in 

list scheduling) and compute robustness bounds 

Predicting conditional branches



Today’s challenge
• Complex heterogenous hardware and 

complex graph-based workload
• The HPC-DAG model

Today’s challenge



We witness sophisticated autonomous features (e.g
autonomous driving) in the realization of safety critical
applications

• Complex graph-based workload: 
AI algorithms realize capabilities (e.g. visual perception, 
decision making) in safety critical applications

• Complex hetrerogenous hardware: 
These algorithm often require the usage of hardware 
accelerator (graphics processing units, deep learning etc.)

• Integration of  separately developed components: 
Multiple functions are integrated on a common multicore  
high performance computing platform (to reduce cost and 
energy)

Today’s challenge



We witness sophisticated autonomous features (e.g
autonomous driving) in the realization of safety critical
applications

New features
• Complex graph-based workloads
• Complex hetrerogenous hardware
• Need to integrate separately developed components

These factors create a new challenge for certification
We must
• analyse algorithms that include  above features 
• design new scheduling algorithms

Today’s challenge



Kalray MPPA3-80 Coolidge: 80 processors,  5 clusters (16 proc. 
per cluster), a SRAM per cluster (16 modules one per CPU); 
Network On Chip communication architecture
Allocation of nodes to cluster to reduce memory contention
among processors allocated to different clusters
Problem: allocation of nodes to cluster

Cluster architectures



COMPLEX HETEROGENOUS 
HARDWARE
integration of  different engines
in a single platform

NVIDIA Orin pegasus platform (2017) 16 engines: 8 CPU, 2 
dGPU (discrete GPU), 2 iGPU (integrated GPU), 2 DLA (for 
deep learning inference), 2 PVA (Programmable Vision 
Accelerator) total 320 TOPS int8

A piece of code (a node of the DAG) can be executed on 
different engines (with different performance) 
• HP (GPU, DLA, PVA) engines are scarce wrt to CPU
• HP engines have large set up time ==>  non preemptable

Problem: allocation of nodes to CPU; consider preemption

Heterogenous architectures



New computer architectures pose a number of dif-
ficulties in real time systems [Voronov Tanga et al 2021]

• Graph based workload
- Presence of cycles in the graph
- Dependencies among different instances (e.g.     

analysis to decide the motion requires info on previous
frame)

• Allocation of DAG nodes to heterogenous engines

• Access to Hardware accelerators (nonpreemptive)

• Component isolation

• Concurrent access to memory

Today’s challenge



Concurrent access to memory is critical in 
many-core architectures
• [Koike et al 2020] ILP A time-triggered schedule 

coordinates access to shared resources (global banks) so 
that the read and write phases do not overlap propose 
an Integer Linear Programming (ILP) to reduce  task 
switching overhead. 

• [Bathie et al. 2020] [Marchal et al. 2018] ILP to compute 
maximum size of memory requirement during execution
with  the goal to bound the maximum amount of 
memory that may be needed by any schedule to execute
the DAG. 

Concurrent access is not the only issue
We need a more general model

Today’s challenge



HPC-DAG (Heterogenous Parallel Conditional)–DAG  task 
model [Houssam-Eddine, Capodieci, Cavicchioli et al.2021]

Heterogenous architecture: 
• a node x of the C-DAG can be executed on different engines (with 

different performance)
• tag(x)= list of machines eligible for executing x 

The number of possible assignments of nodes to machine 
is too large
• Many combinations can be (heuristically)  reduced

Two steps
1. Preprocessing of the program to obtain a Specification graph G

with a limited number of alternatives
2. Schedule G on the given platform

The HPC-DAG task model



Specification graph G
A    specifies two alternatives
Alternative 1
Alternative 2

G has both conditional branches and alternative nodes
• An alternative node describes off-line alternative implementations

of a subdag, each one having a different parallelism
• Alternative executions can be also expressed using conditional nodes

for expressing alternative options to be chosen online based on 
runtime conditions (more complicated)

HPC-DAG task model:  HPC-DAG jobs are recurrent

The HPC-DAG model



Specification graph G
• G has both conditional branches and alternative nodes
• An alternative node describes two possible choices of 

executing a piece of code (possiby different set of 
machines)

• Altenrative nodes are either defined a priori  or can 
represent scheduling 

The scheduling of a task specification HPC-DAG  G 
requires to 
1. decide for each alternative node which choice should

be executed obtaining a  concrete task C-DAG G’
2. assign to  each node x of G’ an engine (eligible for 

executing x) 
3. schedule the restricted processor G’

The HPC-DAG model



Concrete task: 
• a node x of the DAG can be executed on different

engines (with different performance)
• tag(x)= list of machines eligible for executing x
• the HPC DAG model has conditional branches and 

alternative branches
• an alternative node describes two possible choices

any choice is ok

The HPC-DAG model

Specification graph Concrete C-DAG



2. Schedule the  specification HPC-DAG
High complexity
• The large number of combinations (alternative nodes, 

conditional nodes, allocation decisions) gives a too large ILP 
(number of constraints / variables) Preliminary results deal 
with very small instances

• Use of heuristics (first assign nodes to machine, then use list 
schedulng) is complicated by the many conflicting constraints

Open
• under which condition we can obtain a tractable ILP?
• design and analysis of on-line heuristics (that exploit 

outcome of branches)

The HPC-DAG model 
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